Measuring collective cell movement and extracellular matrix interactions using magnetic resonance imaging
نویسندگان
چکیده
Collective cell behaviors in migration and force generation were studied at the mesoscopic-level using cells grown in a 3D extracellular matrix (ECM) simulating tissues. Magnetic resonance imaging (MRI) was applied to investigate dynamic cell mechanics at this level. MDCK, NBT2, and MEF cells were embedded in 3D ECM, forming clusters that then migrated and generated forces affecting the ECM. The cells demonstrated MRI contrast due to iron accumulation in the clusters. Timelapse-MRI enabled the measurement of dynamic stress fields generated by the cells, as well as simultaneous monitoring of the cell distribution and ECM deformation/remodeling. We found cell clusters embedded in the 3D ECM can exert translational forces to pull and push, as well as torque, their surroundings. We also observed that the sum of forces generated by multiple cell clusters may result in macroscopic deformation. In summary, MRI can be used to image cell-ECM interactions mesoscopically.
منابع مشابه
The Assessment of Toxicity Characteristics of Cellular Uptake of Paramagnetic Nanoparticles as a New Magnetic Resonance Imaging Contrast Agent
Nanoparticles are unique that enable many promising medical and technological applications intheir physical, and chemical properties. It is widely accepted that nanoparticles should bethoroughly tested for health nanotoxicity, but a moderate risk analysis is currently prevented by arevealing absence of mechanistic knowledge of nanoparticle toxicity. The purpose of this study<b...
متن کاملThe Assessment of Toxicity Characteristics of Cellular Uptake of Paramagnetic Nanoparticles as a New Magnetic Resonance Imaging Contrast Agent
Nanoparticles are unique that enable many promising medical and technological applications intheir physical, and chemical properties. It is widely accepted that nanoparticles should bethoroughly tested for health nanotoxicity, but a moderate risk analysis is currently prevented by arevealing absence of mechanistic knowledge of nanoparticle toxicity. The purpose of this study<b...
متن کاملP9: Cervical Spinal Cord Extraction in Patients with Multiple Sclerosis Using Magnetic Resonance Imaging for Measuring Cross-Sectional Area
Multiple sclerosis (MS) refers to the lesions that accumulate in the brain and spinal cord. Magnetic resonance imaging (MRI) is the most sensitive and versatile modality used to show changes in the tissues over time. There has been significant interest in evaluating the relationship between the brain atrophy and disease progression rather than the spinal cord atrophy. The cervical spinal cord h...
متن کاملFabrication of New 3D Phantom for Measuring Geometric Distortion in Magnetic Resonance Imaging System
Introduction: Geometric distortion is a major shortcoming of magnetic resonance imaging (MRI), which has an important influence on the accuracy of volumetric measurements, an important parameter in neurology and oncology. Our goal is to design and construct a new three- dimensional phantom using a 3D printer in order to measure geometric distortion and its reproducibility in...
متن کاملGadolinium-Diethylenetriaminepenta-Acetic acid Conjugated with Monoclonal Antibody C595 as New Magnetic Resonance Imaging Contrast Agents for Breast Cancer (MCF-7) Detection
Background: The monoclonal antibody, C595, against breast cancer cell line was conjugated with cyclic anhydride gadolinium-diethylenetriaminepenta-acetic acid (Gd-cDTPAa) to produce Gd-DTPA-C595 and used as specific breast cancer cell line (MCF-7) contrast agents in magnetic resonance imaging (MRI). Methods: After incubation of breast cancer cell line (MCF-7), with different contrast agents (G...
متن کامل